

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Effect 0.11.0 documentation

Effect

Effect is a library for helping you write purely functional code by
isolating the effects (that is, IO or state manipulation) in your code.

It supports both Python 2.6 and up, and 3.4 and up, as well as PyPy.

It lives on PyPI at https://pypi.python.org/pypi/effect and GitHub at
https://github.com/python-effect/effect.

Documentation

	1. Quick Introduction
	1.1. Explanation by Example

	1.2. A quick tour, with definitions

	1.3. Callback chains

	2. Testing Effectful Code

	3. API documentation
	3.1. Core API

	3.2. Submodules
	3.2.1. effect.async module

	3.2.2. effect.do module

	3.2.3. effect.fold module

	3.2.4. effect.io module

	3.2.5. effect.ref module

	3.2.6. effect.retry module

	3.2.7. effect.testing module

	3.2.8. effect.threads module

Indices and tables

	Index

	Module Index

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

1. Quick Introduction

1.1. Explanation by Example

Effect starts with a very simple idea: instead of having a function which
performs side-effects (such as IO):

def get_user_name():
 return raw_input("Enter User Name> ") # or 'input' in Python 3

you instead have a function which returns a representation of the
side-effect:

def get_user_name():
 return Effect(ReadLine("Enter User Name> "))

We call objects like ReadLine an intent – that is, the intent of this
effect is to read a line of input from the user. Ideally, intents are very
simple objects with public attributes and no behavior, only data.

class ReadLine(object):
 def __init__(self, prompt):
 self.prompt = prompt

To perform the ReadLine intent, we must implement a performer function:

@sync_performer
def perform_read_line(dispatcher, readline):
 return raw_input(readline.prompt)

To do something with the result of the effect, we must attach callbacks with
the on method:

def greet():
 return get_user_name().on(
 success=lambda r: Effect(Print("Hello,", r)),
 error=lambda exc_info: Effect(Print("There was an error!", exc_info[1])))

(Here we assume another intent, Print, which shows some text to the user.)

A (sometimes) nicer syntax is provided for adding callbacks, with the
effect.do.do() decorator.

from effect.do import do

@do
def greet():
 try:
 name = yield get_user_name()
 except Exception as e:
 yield Effect(Print("There was an error!", e))
 else:
 yield Effect(Print("Hello,", name))

Finally, to actually perform these effects, they can be passed to
effect.sync_perform(), along with a dispatcher which looks up the
performer based on the intent.

from effect import sync_perform

def main():
 eff = greet()
 dispatcher = ComposedDispatcher([
 TypeDispatcher({ReadLine: perform_read_line}),
 base_dispatcher])
 sync_perform(dispatcher, eff)

This has a number of advantages. First, your unit tests for get_user_name
become simpler. You don’t need to mock out or parameterize the raw_input
function - you just call get_user_name and assert that it returns a
ReadLine object with the correct ‘prompt’ value.

Second, you can implement ReadLine in a number of different ways - it’s
possible to override the way an intent is performed to do whatever you want. For
example, you could implement an HTTPRequest client either using the popular
requests [https://pypi.python.org/pypi/requests] package, or using the Twisted-based treq [https://pypi.python.org/pypi/treq] package – without
needing to change any of your application code, since it’s all in terms of the
Effect API.

1.2. A quick tour, with definitions

	Intent: An object which describes a desired action, ideally with simple
inert data in public attributes. For example, ReadLine(prompt='> ') could
be an intent that describes the desire to read a line from the user after
showing a prompt.

	effect.Effect: An object which binds callbacks to receive the result
of performing an intent.

	Performer: A callable that takes the Dispatcher, an Intent, and a Box. It
executes the Intent and puts the result in the Box. For example, the
performer for ReadLine() could call raw_input(intent.prompt).

	Dispatcher: A callable that takes an Intent and finds the Performer that can
execute it (or None). See TypeDispatcher and ComposedDispatcher
for handy pre-built dispatchers.

	Box: An object that has succeed and fail methods for providing the
result of an effect (potentially asynchronously). Usually you don’t need
to care about this, if you define your performers with
effect.sync_performer() or txeffect.deferred_performer from the
txeffect [https://pypi.python.org/pypi/txeffect] package.

There’s a few main things you need to do to use Effect.

	Define some intents to describe your side-effects (or use a library
containing intents that already exist). For example, an HTTPRequest
intent that has method, url, etc attributes.

	Write your application code to create effects like
Effect(HTTPRequest(...)) and attach callbacks to them with
Effect.on().

	As close as possible to the top-level of your application, perform your
effect(s) with effect.sync_perform().

	You will need to pass a dispatcher to effect.sync_perform(). You should
create one by creating a effect.TypeDispatcher with your own
performers (e.g. for HTTPRequest), and composing it with
effect.base_dispatcher (which has performers for built-in effects)
using effect.ComposedDispatcher.

1.3. Callback chains

Effect allows you to build up chains of callbacks that process data in turn.
That is, if you attach a callback a and then a callback b to an Effect,
a will be called with the original result, and b will be called with
the result of a. This is exactly how Twisted’s Deferreds work, and similar
to the monadic bind (>>=) function from Haskell.

This is a great way to build abstractions, compared to non-chaining callback
systems like Python’s Futures. You can easily build abstractions like the
following:

def request_url(method, url, str_body):
 """Perform an HTTP request."""
 return Effect(HTTPRequest(method, url, str_body))

def request_200_url(method, url, str_body):
 """
 Perform an HTTP request, and raise an error if the response is not 200.
 """
 def check_status(response):
 if response.code != 200:
 raise HTTPError(response.code)
 return response
 return request_url(method, url, str_body).on(success=check_status)

def json_request(method, url, dict_body):
 """
 Perform an HTTP request where the body is sent as JSON and the response
 is automatically decoded as JSON if the Content-type is
 application/json.
 """
 str_body = json.dumps(dict_body)
 return request_200_url(method, url, str_body).on(success=decode_json)

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

2. Testing Effectful Code

The most useful testing tool you’ll want to familiarize yourself with is
effect.testing.perform_sequence(). Using this in your unit tests will
allow you to perform your effects while ensuring that the expected intents are
performed in the expected order, as well as provide the results of those
effects.

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

3. API documentation

3.1. Core API

A system for helping you separate your IO and state-manipulation code
(hereafter referred to as “effects”) from everything else, thus allowing
the majority of your code to be easier to test and compose (that is,
have the general benefits of purely functional code).

See https://effect.readthedocs.org/ for documentation.

	
class effect.Effect(intent, callbacks=NOTHING)

	Bases: object

Take an object that describes a desired effect (called an “Intent”), and
allow binding callbacks to be called with the result of the effect.

Effects can be performed with perform().

	Parameters:	intent – The intent to be performed.

	
callbacks = Attribute(name='callbacks', default=Factory(factory=<type 'list'>), validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
intent = Attribute(name='intent', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
on(success=None, error=None)

	Return a new Effect with the given success and/or error callbacks
bound.

The result of the Effect will be passed to the first callback. Any
callbacks added afterwards will receive the result of the previous
callback. Normal return values are passed on to the next success
callback, and exceptions are passed to the next error callback
as a sys.exc_info() tuple.

If a callback returns an Effect, the result of that
Effect will be passed to the next callback.

	
effect.sync_perform(dispatcher, effect)

	Perform an effect, and return its ultimate result. If the final result is
an error, the exception will be raised.

This requires that the effect (and all effects returned from any of its
callbacks) be synchronous. If the result is not available immediately,
NotSynchronousError will be raised.

	
effect.sync_performer(f)

	A decorator for performers that return a value synchronously.

This decorator should be used if performing the intent will be synchronous,
i.e., it will block until the result is available and the result will be
simply returned. This is the common case unless you’re using an
asynchronous framework like Twisted or asyncio.

Note that in addition to returning (or raising) values as normal, you can
also return another Effect, in which case that Effect will be immediately
performed with the same dispatcher. This is useful if you’re implementing
one intent which is built on top of other effects, without having to
explicitly perform them.

The function being decorated is expected to take a dispatcher and an
intent, and should return or raise normally. The wrapper function that this
decorator returns will accept a dispatcher, an intent, and a box
(conforming to the performer interface). The wrapper deals with putting the
return value or exception into the box.

Example:

@sync_performer
def perform_foo(dispatcher, foo):
 return do_side_effect(foo)

	
class effect.TypeDispatcher(mapping)

	Bases: object

An Effect dispatcher which looks up the performer to use by type.

	Parameters:	mapping – mapping of intent type to performer

	
mapping = Attribute(name='mapping', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
class effect.ComposedDispatcher(dispatchers)

	Bases: object

A dispatcher which composes other dispatchers.

The dispatchers given will be searched in order until a performer is found.

	Parameters:	dispatchers – Dispatchers to search.

	
dispatchers = Attribute(name='dispatchers', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
class effect.Delay(delay)

	Bases: object

An intent which represents a delay in time.

When performed, the specified delay will pass and then the effect will
result in None.

	Parameters:	delay (float) – The number of seconds to delay.

	
delay = Attribute(name='delay', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
effect.perform_delay_with_sleep(*args, **kwargs)

	Perform a Delay by calling time.sleep.

	
class effect.ParallelEffects(effects)

	Bases: object

An effect intent that asks for a number of effects to be run in parallel,
and for their results to be gathered up into a sequence.

effect.async.perform_parallel_async() can perform this Intent
assuming all child effects have asynchronous performers.
effect.threads.perform_parallel_with_pool() can perform blocking
performers in a thread pool.

Note that any performer for this intent will need to be compatible with
performers for all of its child effects’ intents. Notably, if child effects
have blocking performers, the threaded performer should be used, and if
they’re asynchronous, the asynchronous performer should be used.

Performers of this intent must fail with a FirstError exception when
any child effect fails, representing the first error.

	Parameters:	effects – Effects to be performed in parallel.

	
effects = Attribute(name='effects', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
effect.parallel(effects)

	Given multiple Effects, return one Effect that represents the aggregate of
all of their effects. The result of the aggregate Effect will be a list of
their results, in the same order as the input to this function. If any
child effect fails, the first such failure will be propagated as a
FirstError exception. If additional error information is desired,
use parallel_all_errors().

This is just a convenience wrapper for returning of Effect of
ParallelEffects.

	Parameters:	effects – Effects which should be performed in parallel.

	Returns:	An Effect that results in a list of results, or which fails with
a FirstError.

	
effect.parallel_all_errors(effects)

	Given multiple Effects, return one Effect that represents the aggregate of
all of their effects. The result of the aggregate Effect will be a list of
their results, in the same order as the input to this function.

This is like parallel(), but it differs in that exceptions from all
child effects will be accumulated and provided in the return value, instead
of just the first one.

	Parameters:	effects – Effects which should be performed in parallel.

	Returns:	An Effect that results in a list of (is_error, result) tuples,
where is_error is True if the child effect raised an exception, in
which case result will be an exc_info tuple. If is_error is
False, then result will just be the result as provided by the child
effect.

	
class effect.Constant(result)

	Bases: object

An intent that returns a pre-specified result when performed.

	Parameters:	result – The object which the Effect will result in.

	
result = Attribute(name='result', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
class effect.Error(exception)

	Bases: object

An intent that raises a pre-specified exception when performed.

	Parameters:	exception (BaseException) – Exception instance to raise.

	
exception = Attribute(name='exception', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
class effect.Func(func, *args, **kwargs)

	Bases: object

An intent that returns the result of the specified function.

Note that Func is something of a cop-out. It doesn’t follow the
convention of an intent being transparent data that is easy to introspect,
since it just wraps an opaque callable. This has two drawbacks:

	it’s harder to test, since the only thing you can do is call the
function, instead of inspect its data.

	it doesn’t offer any ability for changing the way the effect is
performed.

If you use Func in your application code, know that you are giving
up some ease of testing and flexibility. It’s preferable to represent your
intents as inert objects with public attributes of simple data. However,
this is useful for integrating wih “legacy” side-effecting code in a quick
way.

	Parameters:	
	func – The function to call when this intent is performed.

	args – Positional arguments to pass to the function.

	kwargs – Keyword arguments to pass to the function.

	
args = Attribute(name='args', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
func = Attribute(name='func', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
kwargs = Attribute(name='kwargs', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
effect.catch(exc_type, callable)

	A helper for handling errors of a specific type:

eff.on(error=catch(SpecificException,
 lambda exc_info: "got an error!"))

If any exception other than a SpecificException is thrown, it will be
ignored by this handler and propogate further down the chain of callbacks.

	
effect.raise_(exception, tb=None)

	Simple convenience function to allow raising exceptions from lambdas.

This is slightly more convenient than six.reraise because it takes an
exception instance instead of needing the type separate from the instance.

	Parameters:	exception – An exception instance (not an exception type).

	raise_(exc) is the same as raise exc.

	raise_(exc, tb) is the same as raise type(exc), exc, tb.

	
exception effect.NoPerformerFoundError

	Bases: exceptions.Exception

Raised when a performer for an intent couldn’t be found.

	
exception effect.NotSynchronousError

	Bases: exceptions.Exception

Performing an effect did not immediately return a value.

	
effect.perform(dispatcher, effect)

	Perform an effect and invoke callbacks bound to it. You probably don’t want
to use this. Instead, use sync_perform() (or, if you’re using
Twisted, see the txeffect [https://warehouse.python.org/project/txeffect] library).

The dispatcher will be called with the intent, and is expected to return a
performer (another callable). See TypeDispatcher and
ComposedDispatcher for some implementations of dispatchers, and
effect.base_dispatcher for a dispatcher supporting basic intents
like Constant et al.

The performer will often be decorated with sync_performer() or the
deferred_performer from txeffect [https://warehouse.python.org/project/txeffect] and will be invoked with the
dispatcher [1] and the intent, and should perform the desired
effect. [2] The performer should return the result of the effect, or
raise an exception, and the result will be passed on to the first callback,
then the result of the first callback will be passed to the next callback,
and so on.

Both performers and callbacks may return regular values, raise exceptions,
or return another Effect, which will be recursively performed, such that
the result of the returned Effect becomes the result passed to the next
callback. In the case of exceptions, the next error-callback will be called
with a sys.exc_info()-style tuple.

	Returns:	None

	[1]	The dispatcher is passed because some performers need to
make recursive calls to perform(), because they need to perform
other effects (see parallel() and perform_parallel_async()
for an example of this).

	[2]	Without using one of those decorators, the performer is actually
passed three arguments, not two: the dispatcher, the intent, and a
“box”. The box is an object that lets the performer provide the result,
optionally asynchronously. To provide the result, use
box.succeed(result) or box.fail(exc_info), where exc_info is
a sys.exc_info()-style tuple. Decorators like sync_performer()
simply abstract this away.

	
exception effect.FirstError(exc_info, index)

	Bases: exceptions.Exception

One of the effects in a ParallelEffects resulted in an error. This
represents the first such error that occurred.

	
exc_info = Attribute(name='exc_info', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
index = Attribute(name='index', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

3.2. Submodules

	3.2.1. effect.async module

	3.2.2. effect.do module

	3.2.3. effect.fold module

	3.2.4. effect.io module

	3.2.5. effect.ref module

	3.2.6. effect.retry module

	3.2.7. effect.testing module

	3.2.8. effect.threads module

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

 	3. API documentation

3.2.1. effect.async module

Generic asynchronous performers.

	
effect.async.perform_parallel_async(dispatcher, intent, box)

	A performer for ParallelEffects which works if all child Effects are
already asynchronous. Use this for things like Twisted, asyncio, etc.

WARNING: If this is used when child Effects have blocking performers, it
will run them in serial, not parallel.

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

 	3. API documentation

3.2.2. effect.do module

An imperative-looking notation for Effectful code.

See do().

	
effect.do.do(f)

	A decorator which allows you to use do notation in your functions, for
imperative-looking code:

@do
def foo():
 thing = yield Effect(Constant(1))
 yield do_return('the result was %r' % (thing,))

eff = foo()
return eff.on(...)

@do must decorate a generator function (not any other type of
iterator). Any yielded values must either be Effects or the result of a
do_return() call. The result of a yielded Effect will be passed back
into the generator as the result of the yield expression. Yielded
do_return() values will provide the ultimate result of the Effect
that is returned by the decorated function. Note that do_return() is
only necessary for Python 2 compatibility; return statements can be used
directly in Python 3-only code.

It’s important to note that any generator function decorated by @do
will no longer return a generator, but instead it will return an Effect,
which must be used just like any other Effect.

Errors are also converted to normal exceptions:

@do
def foo():
 try:
 thing = yield Effect(Error(RuntimeError('foo')))
 except RuntimeError:
 yield do_return('got a RuntimeError as expected')

(This decorator is named for Haskell’s do notation, which is similar in
spirit).

	
effect.do.do_return(val)

	Specify a return value for a @do function.

The result of this function must be yielded. e.g.:

@do
def foo():
 yield do_return('hello')

If you’re writing Python 3-only code, you don’t need to use this function,
and can just use the return statement as normal.

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

 	3. API documentation

3.2.3. effect.fold module

	
exception effect.fold.FoldError(accumulator, wrapped_exception)

	Bases: exceptions.Exception

Raised when one of the Effects passed to fold_effect() fails.

	Variables:	
	accumulator – The data accumulated so far, before the failing Effect.

	wrapped_exception – The exc_info tuple representing the original
exception raised by the failing Effect.

	
effect.fold.fold_effect(f, initial, effects)

	Fold over the results of effects, left-to-right.

This is like functools.reduce(), but instead of acting on plain
values, it acts on the results of effects.

The function f will be called with the accumulator (starting with
initial) and a result of an effect repeatedly for each effect. The
result of the previous call will be passed as the accumulator to the next
call.

For example, the following code evaluates to an Effect of 6:

fold_effect(operator.add, 0, [Effect(Constant(1)),
 Effect(Constant(2)),
 Effect(Constant(3))])

If no elements were in the list, Effect would result in 0.

	Parameters:	
	f (callable) – function of (accumulator, element) -> accumulator

	initial – The value to be passed as the accumulator to the first
invocation of f.

	effects – sequence of Effects.

	
effect.fold.sequence(effects)

	Perform each Effect serially, collecting their results into a list.

	Raises:	FoldError with the list accumulated so far when an effect
fails.

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

 	3. API documentation

3.2.4. effect.io module

Intents and performers for basic user interaction.

Use effect.io.stdio_dispatcher as a dispatcher for Display and
Prompt that uses built-in Python standard io facilities.

	
class effect.io.Display(output)

	Bases: object

Display some text to the user.

	
output = Attribute(name='output', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
class effect.io.Prompt(prompt)

	Bases: object

Get some input from the user, with a prompt.

	
prompt = Attribute(name='prompt', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
effect.io.perform_display_print(*args, **kwargs)

	Perform a Display intent by printing the output.

	
effect.io.perform_get_input_raw_input(*args, **kwargs)

	Perform a Prompt intent by using raw_input (or input on
Python 3).

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

 	3. API documentation

3.2.5. effect.ref module

	
class effect.ref.Reference(initial)

	Bases: object

An effectful mutable variable, suitable for sharing between multiple
logical threads of execution, that can be read and modified in a purely
functional way.

Compare to Haskell’s IORef or Clojure’s atom.

	Note:	Warning: Instantiating a Reference causes an implicit side-effect.
In other words, Reference is not a referentially transparent
function, and you can’t use equational reasoning on it: a call to
Reference is not interchangeable with the result of a call to
Reference, since identity matters. If you want to create references in
purely functional code, you can use the effect.Func intent:
effect.Effect(effect.Func(Reference, initial)).

	
modify(transformer)

	Return an Effect that updates the value with fn(old_value).

	Parameters:	transformer – Function that takes old value and returns the new
value.

This is not guaranteed to be linearizable if multiple threads are
modifying the reference at the same time. It is safe to assume
consistent modification as long as you’re not using multiple threads,
though.

	
read()

	Return an Effect that results in the current value.

	
class effect.ref.ReadReference(ref)

	Bases: object

Intent that gets a Reference’s current value.

	
ref = Attribute(name='ref', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
class effect.ref.ModifyReference(ref, transformer)

	Bases: object

Intent that modifies a Reference value in-place with a transformer func.

This intent is not necessarily linearizable if multiple threads are
modifying the same reference at the same time.

	
ref = Attribute(name='ref', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
transformer = Attribute(name='transformer', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
effect.ref.perform_read_reference(*args, **kwargs)

	Performer for ReadReference.

	
effect.ref.perform_modify_reference(*args, **kwargs)

	Performer for ModifyReference.

This performer is not linearizable if multiple physical threads are
modifying the same reference at the same time.

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

 	3. API documentation

3.2.6. effect.retry module

Retrying effects.

	
effect.retry.retry(effect, should_retry)

	Retry an effect as long as it raises an exception and as long as the
should_retry error handler returns an Effect of True.

If should_retry returns an Effect of False, then the returned effect
will fail with the most recent error from func.

	Parameters:	
	effect (effect.Effect) – Any effect.

	should_retry – A function which should take an exc_info tuple as an
argument and return an effect of bool.

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Effect 0.11.0 documentation

 	3. API documentation

3.2.7. effect.testing module

Various functions and dispatchers for testing effects.

Usually the best way to test effects is by using perform_sequence().

	
effect.testing.perform_sequence(seq, eff, fallback_dispatcher=None)

	Perform an Effect by looking up performers for intents in an ordered
“plan”.

First, an example:

@do
def code_under_test():
 r = yield Effect(MyIntent('a'))
 r2 = yield Effect(OtherIntent('b'))
 yield do_return((r, r2))

def test_code():
 seq = [
 (MyIntent('a'), lambda i: 'result1'),
 (OtherIntent('b'), lambda i: 'result2')
]
 eff = code_under_test()
 assert perform_sequence(seq, eff) == ('result1', 'result2')

Every time an intent is to be performed, it is checked against the next
item in the sequence, and the associated function is used to calculate its
result. Note that the objects used for intents must provide a meaningful
__eq__ implementation, since they will be checked for equality. Using
something like attrs [https://pypi.python.org/pypi/attrs] or pyrsistent [https://pypi.python.org/pypi/pyrsistent]‘s PClass [http://pyrsistent.readthedocs.org/en/latest/api.html#pyrsistent.PClass] is recommended for
your intents, since they will auto-generate __eq__ and many other methods
useful for immutable objects.

If an intent can’t be found in the sequence or the fallback dispatcher, an
AssertionError is raised with a log of all intents that were performed
so far. Each item in the log starts with one of three prefixes:

	sequence: this intent was found in the sequence

	fallback: a performer for this intent was provided by the fallback
dispatcher

	NOT FOUND: no performer for this intent was found.

	NEXT EXPECTED: the next item in the sequence, if there is one. This
will appear immediately after a NOT FOUND.

	Parameters:	
	sequence (list) – List of (intent, fn) tuples, where fn is a
function that should accept an intent and return a result.

	eff (Effect) – The Effect to perform.

	fallback_dispatcher – A dispatcher to use for intents that aren’t
found in the sequence. if None is provided, base_dispatcher is
used.

	Returns:	Result of performed sequence

	
effect.testing.parallel_sequence(parallel_seqs, fallback_dispatcher=None)

	Convenience for expecting a ParallelEffects in an expected intent sequence,
as required by perform_sequence() or SequenceDispatcher.

This lets you verify that intents are performed in parallel in the
context of perform_sequence(). It returns a two-tuple as expected by
that function, so you can use it like this:

@do
def code_under_test():
 r = yield Effect(SerialIntent('serial'))
 r2 = yield parallel([Effect(MyIntent('a')),
 Effect(OtherIntent('b'))])
 yield do_return((r, r2))

def test_code():
 seq = [
 (SerialIntent('serial'), lambda i: 'result1'),
 nested_parallel([
 [(MyIntent('a'), lambda i: 'a result')],
 [(OtherIntent('b'), lambda i: 'b result')]
]),
]
 eff = code_under_test()
 assert perform_sequence(seq, eff) == ('result1', 'result2')

The argument is expected to be a list of intent sequences, one for each
parallel effect expected. Each sequence will be performed with
perform_sequence() and the respective effect that’s being run in
parallel. The order of the sequences must match that of the order of
parallel effects.

	Parameters:	
	parallel_seqs – list of lists of (intent, performer), like
what perform_sequence() accepts.

	fallback_dispatcher – an optional dispatcher to compose onto the
sequence dispatcher.

	Returns:	(intent, performer) tuple as expected by perform_sequence()
where intent is ParallelEffects object

	
effect.testing.nested_sequence(seq, get_effect=<operator.attrgetter object>, fallback_dispatcher=TypeDispatcher(mapping={<class 'effect._intents.Constant'>: <function perform_constant at 0x7fd7336b9c08>, <class 'effect._intents.Error'>: <function perform_error at 0x7fd7336442a8>, <class 'effect._intents.Func'>: <function perform_func at 0x7fd7336449b0>}))

	Return a function of Intent -> a that performs an effect retrieved from the
intent (by accessing its effect attribute, by default) with the given
intent-sequence.

A demonstration is best:

SequenceDispatcher([
 (BoundFields(effect=mock.ANY, fields={...}),
 nested_sequence([(SomeIntent(), perform_some_intent)]))
])

The point is that sometimes you have an intent that wraps another effect,
and you want to ensure that the nested effects follow some sequence in the
context of that wrapper intent.

get_effect defaults to attrgetter('effect'), so you can override it if
your intent stores its nested effect in a different attribute. Or, more
interestingly, if it’s something other than a single effect, e.g. for
ParallelEffects see the parallel_sequence() function.

	Parameters:	
	seq (list) – sequence of intents like SequenceDispatcher takes

	get_effect – callable to get the inner effect from the wrapper
intent.

	fallback_dispatcher – an optional dispatcher to compose onto the
sequence dispatcher.

	Returns:	callable that can be used as performer of a wrapped intent

	
class effect.testing.SequenceDispatcher(sequence)

	Bases: object

A dispatcher which steps through a sequence of (intent, func) tuples and
runs func to perform intents in strict sequence.

This is the dispatcher used by perform_sequence(). In general that
function should be used directly, instead of this dispatcher.

It’s important to use with sequence.consume(): to ensure that all of the
intents are performed. Otherwise, if your code has a bug that causes it to
return before all effects are performed, your test may not fail.

None is returned if the next intent in the sequence is not equal to
the intent being performed, or if there are no more items left in the
sequence (this is standard behavior for dispatchers that don’t handle an
intent). This lets this dispatcher be composed easily with others.

	Parameters:	sequence (list) – Sequence of (intent, fn).

	
consume(*args, **kwds)

	Return a context manager that can be used with the with syntax to
ensure that all steps are performed by the end.

	
consumed()

	Return True if all of the steps were performed.

	
sequence = Attribute(name='sequence', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
effect.testing.noop(intent)

	Return None. This is just a handy way to make your intent sequences (as
used by perform_sequence()) more concise when the effects you’re
expecting in a test don’t return a result (and are instead only performed
for their side-effects):

seq = [
 (Prompt('Enter your name: '), lambda i: 'Chris')
 (Greet('Chris'), noop),
]

	
effect.testing.const(value)

	Return function that takes an argument but always return given value.
Useful when creating sequence used by perform_sequence(). For example,

>>> dt = datetime(1970, 1, 1)
>>> seq = [(Func(datetime.now), const(dt))]

	Parameters:	value – This will be returned when called by returned function

	Returns:	callable that takes an arg and always returns value

	
effect.testing.conste(excp)

	Like const() but takes and exception and returns function that raises
the exception

	Parameters:	excp – Exception that will be raised

	Type:	Exception

	Returns:	callable that will raise given exception

	
effect.testing.intent_func(fname)

	Return function that returns Effect of tuple of fname and its args. Useful
in writing tests that expect intent based on args. For example, if you are
testing following function:

@do
def code_under_test(arg1, arg2, eff_returning_func=eff_returning_func):
 r = yield Effect(MyIntent('a'))
 r2 = yield eff_returning_func(arg1, arg2)
 yield do_return((r, r2))

you will need to know the intents which eff_returning_func generates
to test this using perform_sequence(). You can avoid that by doing:

def test_code():
 test_eff_func = intent_func("erf")
 seq = [
 (MyIntent('a'), const('result1')),
 (("erf", 'a1', 'a2'), const('result2'))
]
 eff = code_under_test('a1', 'a2', eff_returning_func=test_eff_func)
 assert perform_sequence(seq, eff) == ('result1', 'result2')

Here, the seq ensures that eff_returning_func is called with arguments
a1 and a2.

	Parameters:	fname (str) – First member of intent tuple returned

	Returns:	callable with multiple positional arguments

	
effect.testing.resolve_effect(effect, result, is_error=False)

	Supply a result for an effect, allowing its callbacks to run.

Note that is a pretty low-level testing utility; it’s much better to use a
higher-level tool like perform_sequence() in your tests.

The return value of the last callback is returned, unless any callback
returns another Effect, in which case an Effect representing that
operation plus the remaining callbacks will be returned.

This allows you to test your code in a somewhat “channel”-oriented
way:

eff = do_thing()
next_eff = resolve_effect(eff, first_result)
next_eff = resolve_effect(next_eff, second_result)
result = resolve_effect(next_eff, third_result)

Equivalently, if you don’t care about intermediate results:

result = resolve_effect(
 resolve_effect(
 resolve_effect(
 do_thing(),
 first_result),
 second_result),
 third_result)

NOTE: parallel effects have no special support. They can be resolved with
a sequence, and if they’re returned from another effect’s callback they
will be returned just like any other effect.

	Parameters:	
	is_error (bool) – Indicate whether the result should be treated as an
exception or a regular result.

	result – If is_error is False, this can be any object and will be
treated as the result of the effect. If is_error is True, this must
be a three-tuple in the style of sys.exc_info.

	
effect.testing.fail_effect(effect, exception)

	Resolve an effect with an exception, so its error handler will be run.

	
class effect.testing.EQDispatcher(mapping)

	Bases: object

An equality-based (constant) dispatcher.

This dispatcher looks up intents by equality and performs them by returning
an associated constant value.

This is sometimes useful, but perform_sequence() should be
preferred, since it constrains the order of effects, which is usually
important.

Users provide a mapping of intents to results, where the intents are
matched against the intents being performed with a simple equality check
(not a type check!).

The mapping must be provided as a sequence of two-tuples. We don’t use a
dict because we don’t want to require that the intents be hashable (in
practice a lot of them aren’t, and it’s a pain to require it). If you want
to construct your mapping as a dict, you can, just pass in the result of
d.items().

e.g.:

>>> sync_perform(EQDispatcher([(MyIntent(1, 2), 'the-result')]),
... Effect(MyIntent(1, 2)))
'the-result'

assuming MyIntent supports __eq__ by value.

	Parameters:	mapping (list) – A sequence of tuples of (intent, result).

	
mapping = Attribute(name='mapping', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
class effect.testing.EQFDispatcher(mapping)

	Bases: object

An Equality-based function dispatcher.

This dispatcher looks up intents by equality and performs them by invoking
an associated function.

This is sometimes useful, but perform_sequence() should be
preferred, since it constrains the order of effects, which is usually
important.

Users provide a mapping of intents to functions, where the intents are
matched against the intents being performed with a simple equality check
(not a type check!). The functions in the mapping will be passed only the
intent and are expected to return the result or raise an exception.

The mapping must be provided as a sequence of two-tuples. We don’t use a
dict because we don’t want to require that the intents be hashable (in
practice a lot of them aren’t, and it’s a pain to require it). If you want
to construct your mapping as a dict, you can, just pass in the result of
d.items().

e.g.:

>>> sync_perform(
... EQFDispatcher([(
... MyIntent(1, 2), lambda i: 'the-result')]),
... Effect(MyIntent(1, 2)))
'the-result'

assuming MyIntent supports __eq__ by value.

	Parameters:	mapping (list) – A sequence of two-tuples of (intent, function).

	
mapping = Attribute(name='mapping', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
class effect.testing.Stub(intent)

	Bases: object

DEPRECATED in favor of using perform_sequence().

An intent which wraps another intent, to flag that the intent should
be automatically resolved by resolve_stub().

Stub is intentionally not performable by any default
mechanism.

	
intent = Attribute(name='intent', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None, metadata=mappingproxy({}))

	

	
effect.testing.ESConstant(x)

	DEPRECATED. Return Effect(Stub(Constant(x)))

	
effect.testing.ESError(x)

	DEPRECATED. Return Effect(Stub(Error(x)))

	
effect.testing.ESFunc(x)

	DEPRECATED. Return Effect(Stub(Func(x)))

	
effect.testing.resolve_stubs(dispatcher, effect)

	DEPRECATED in favor of using perform_sequence().

Successively performs effects with resolve_stub until a non-Effect value,
or an Effect with a non-stub intent is returned, and return that value.

Parallel effects are supported by recursively invoking resolve_stubs on
the child effects, if all of their children are stubs.

	
effect.testing.resolve_stub(dispatcher, effect)

	DEPRECATED in favor of perform_sequence().

Automatically perform an effect, if its intent is a Stub.

Note that resolve_stubs is preferred to this function, since it handles
chains of stub effects.

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Effect 0.11.0 documentation

 	3. API documentation

3.2.8. effect.threads module

	
effect.threads.perform_parallel_with_pool(*args, **kwargs)

	A performer for effect.ParallelEffects which uses a
multiprocessing.pool.ThreadPool to perform the child effects in
parallel.

Note that this can’t be used with a multiprocessing.Pool, since
you can’t pass closures to its map method.

This function takes the pool as its first argument, so you’ll need to
partially apply it when registering it in your dispatcher, like so:

my_pool = ThreadPool()
parallel_performer = functools.partial(
 perform_parallel_effects_with_pool, my_pool)
dispatcher = TypeDispatcher({ParallelEffects: parallel_performer, ...})

NOTE: ThreadPool was broken in Python 3.4.0, but fixed by 3.4.1. This
performer should work for any version of Python supported by Effect other
than 3.4.0.

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Effect 0.11.0 documentation

 Python Module Index

 e

 			

 		
 e	

 	[image: -]
 	
 effect	

 	
 	
 effect.async	

 	
 	
 effect.do	

 	
 	
 effect.fold	

 	
 	
 effect.io	

 	
 	
 effect.ref	

 	
 	
 effect.retry	

 	
 	
 effect.testing	

 	
 	
 effect.threads	

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Effect 0.11.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T

A

 	

 	args (effect.Func attribute)

C

 	

 	callbacks (effect.Effect attribute)

 	catch() (in module effect)

 	ComposedDispatcher (class in effect)

 	const() (in module effect.testing)

 	

 	Constant (class in effect)

 	conste() (in module effect.testing)

 	consume() (effect.testing.SequenceDispatcher method)

 	consumed() (effect.testing.SequenceDispatcher method)

D

 	

 	Delay (class in effect)

 	delay (effect.Delay attribute)

 	dispatchers (effect.ComposedDispatcher attribute)

 	

 	Display (class in effect.io)

 	do() (in module effect.do)

 	do_return() (in module effect.do)

E

 	

 	Effect (class in effect)

 	effect (module)

 	effect.async (module)

 	effect.do (module)

 	effect.fold (module)

 	effect.io (module)

 	effect.ref (module)

 	effect.retry (module)

 	effect.testing (module)

 	effect.threads (module)

 	

 	effects (effect.ParallelEffects attribute)

 	EQDispatcher (class in effect.testing)

 	EQFDispatcher (class in effect.testing)

 	Error (class in effect)

 	ESConstant() (in module effect.testing)

 	ESError() (in module effect.testing)

 	ESFunc() (in module effect.testing)

 	exc_info (effect.FirstError attribute)

 	exception (effect.Error attribute)

F

 	

 	fail_effect() (in module effect.testing)

 	FirstError

 	fold_effect() (in module effect.fold)

 	

 	FoldError

 	Func (class in effect)

 	func (effect.Func attribute)

I

 	

 	index (effect.FirstError attribute)

 	intent (effect.Effect attribute)

 	

 	(effect.testing.Stub attribute)

 	

 	intent_func() (in module effect.testing)

K

 	

 	kwargs (effect.Func attribute)

M

 	

 	mapping (effect.testing.EQDispatcher attribute)

 	

 	(effect.TypeDispatcher attribute)

 	(effect.testing.EQFDispatcher attribute)

 	modify() (effect.ref.Reference method)

 	

 	ModifyReference (class in effect.ref)

N

 	

 	nested_sequence() (in module effect.testing)

 	noop() (in module effect.testing)

 	

 	NoPerformerFoundError

 	NotSynchronousError

O

 	

 	on() (effect.Effect method)

 	

 	output (effect.io.Display attribute)

P

 	

 	parallel() (in module effect)

 	parallel_all_errors() (in module effect)

 	parallel_sequence() (in module effect.testing)

 	ParallelEffects (class in effect)

 	perform() (in module effect)

 	perform_delay_with_sleep() (in module effect)

 	perform_display_print() (in module effect.io)

 	perform_get_input_raw_input() (in module effect.io)

 	

 	perform_modify_reference() (in module effect.ref)

 	perform_parallel_async() (in module effect.async)

 	perform_parallel_with_pool() (in module effect.threads)

 	perform_read_reference() (in module effect.ref)

 	perform_sequence() (in module effect.testing)

 	Prompt (class in effect.io)

 	prompt (effect.io.Prompt attribute)

R

 	

 	raise_() (in module effect)

 	read() (effect.ref.Reference method)

 	ReadReference (class in effect.ref)

 	ref (effect.ref.ModifyReference attribute)

 	

 	(effect.ref.ReadReference attribute)

 	Reference (class in effect.ref)

 	

 	resolve_effect() (in module effect.testing)

 	resolve_stub() (in module effect.testing)

 	resolve_stubs() (in module effect.testing)

 	result (effect.Constant attribute)

 	retry() (in module effect.retry)

S

 	

 	sequence (effect.testing.SequenceDispatcher attribute)

 	sequence() (in module effect.fold)

 	SequenceDispatcher (class in effect.testing)

 	

 	Stub (class in effect.testing)

 	sync_perform() (in module effect)

 	sync_performer() (in module effect)

T

 	

 	transformer (effect.ref.ModifyReference attribute)

 	

 	TypeDispatcher (class in effect)

 Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

 _modules/attr/_make.html

 Navigation

 		
 index

 		
 modules |

 		Effect 0.11.0 documentation »

 		Module code »

 Source code for attr._make

from __future__ import absolute_import, division, print_function

import hashlib
import linecache

from operator import itemgetter

from . import _config
from ._compat import iteritems, isclass, iterkeys, metadata_proxy
from .exceptions import FrozenInstanceError, NotAnAttrsClassError

This is used at least twice, so cache it here.
_obj_setattr = object.__setattr__
_init_convert_pat = "__attr_convert_{}"
_tuple_property_pat = " {attr_name} = property(itemgetter({index}))"
_empty_metadata_singleton = metadata_proxy({})

class _Nothing(object):
 """
 Sentinel class to indicate the lack of a value when ``None`` is ambiguous.

 All instances of `_Nothing` are equal.
 """
 def __copy__(self):
 return self

 def __deepcopy__(self, _):
 return self

 def __eq__(self, other):
 return other.__class__ == _Nothing

 def __ne__(self, other):
 return not self == other

 def __repr__(self):
 return "NOTHING"

 def __hash__(self):
 return 0xdeadbeef

NOTHING = _Nothing()
"""
Sentinel to indicate the lack of a value when ``None`` is ambiguous.
"""

def attr(default=NOTHING, validator=None,
 repr=True, cmp=True, hash=True, init=True,
 convert=None, metadata={}):
 """
 Create a new attribute on a class.

 .. warning::

 Does *not* do anything unless the class is also decorated with
 :func:`attr.s`!

 :param default: A value that is used if an ``attrs``-generated ``__init__``
 is used and no value is passed while instantiating or the attribute is
 excluded using ``init=False``.

 If the value is an instance of :class:`Factory`, its callable will be
 used to construct a new value (useful for mutable datatypes like lists
 or dicts).

 If a default is not set (or set manually to ``attr.NOTHING``), a value
 must be supplied when instantiating; otherwise a :exc:`TypeError`
 will be raised.

 :type default: Any value.

 :param callable validator: :func:`callable` that is called by
 ``attrs``-generated ``__init__`` methods after the instance has been
 initialized. They receive the initialized instance, the
 :class:`Attribute`, and the passed value.

 The return value is *not* inspected so the validator has to throw an
 exception itself.

 They can be globally disabled and re-enabled using
 :func:`get_run_validators`.

 :param bool repr: Include this attribute in the generated ``__repr__``
 method.
 :param bool cmp: Include this attribute in the generated comparison methods
 (``__eq__`` et al).
 :param bool hash: Include this attribute in the generated ``__hash__``
 method.
 :param bool init: Include this attribute in the generated ``__init__``
 method. It is possible to set this to ``False`` and set a default
 value. In that case this attributed is unconditionally initialized
 with the specified default value or factory.
 :param callable convert: :func:`callable` that is called by
 ``attrs``-generated ``__init__`` methods to convert attribute's value
 to the desired format. It is given the passed-in value, and the
 returned value will be used as the new value of the attribute. The
 value is converted before being passed to the validator, if any.
 :param metadata: An arbitrary mapping, to be used by third-party
 components.
 """
 return _CountingAttr(
 default=default,
 validator=validator,
 repr=repr,
 cmp=cmp,
 hash=hash,
 init=init,
 convert=convert,
 metadata=metadata,
)

def _make_attr_tuple_class(cls_name, attr_names):
 """
 Create a tuple subclass to hold `Attribute`s for an `attrs` class.

 The subclass is a bare tuple with properties for names.

 class MyClassAttributes(tuple):
 __slots__ = ()
 x = property(itemgetter(0))
 """
 attr_class_name = "{}Attributes".format(cls_name)
 attr_class_template = [
 "class {}(tuple):".format(attr_class_name),
 " __slots__ = ()",
]
 if attr_names:
 for i, attr_name in enumerate(attr_names):
 attr_class_template.append(_tuple_property_pat.format(
 index=i,
 attr_name=attr_name,
))
 else:
 attr_class_template.append(" pass")
 globs = {"itemgetter": itemgetter}
 eval(compile("\n".join(attr_class_template), "", "exec"), globs)
 return globs[attr_class_name]

def _transform_attrs(cls, these):
 """
 Transforms all `_CountingAttr`s on a class into `Attribute`s and saves the
 list as a namedtuple in `__attrs_attrs__`.

 If *these* is passed, use that and don't look for them on the class.
 """
 super_cls = []
 for c in reversed(cls.__mro__[1:-1]):
 sub_attrs = getattr(c, "__attrs_attrs__", None)
 if sub_attrs is not None:
 super_cls.extend(a for a in sub_attrs if a not in super_cls)
 if these is None:
 ca_list = [(name, attr)
 for name, attr
 in cls.__dict__.items()
 if isinstance(attr, _CountingAttr)]
 else:
 ca_list = [(name, ca)
 for name, ca
 in iteritems(these)]

 non_super_attrs = [
 Attribute.from_counting_attr(name=attr_name, ca=ca)
 for attr_name, ca
 in sorted(ca_list, key=lambda e: e[1].counter)
]
 attr_names = [a.name for a in super_cls + non_super_attrs]

 AttrsClass = _make_attr_tuple_class(cls.__name__, attr_names)

 cls.__attrs_attrs__ = AttrsClass(super_cls + [
 Attribute.from_counting_attr(name=attr_name, ca=ca)
 for attr_name, ca
 in sorted(ca_list, key=lambda e: e[1].counter)
])

 had_default = False
 for a in cls.__attrs_attrs__:
 if these is None and a not in super_cls:
 setattr(cls, a.name, a)
 if had_default is True and a.default is NOTHING and a.init is True:
 raise ValueError(
 "No mandatory attributes allowed after an attribute with a "
 "default value or factory. Attribute in question: {a!r}"
 .format(a=a)
)
 elif had_default is False and \
 a.default is not NOTHING and \
 a.init is not False:
 had_default = True

def _frozen_setattrs(self, name, value):
 """
 Attached to frozen classes as __setattr__.
 """
 raise FrozenInstanceError()

def attributes(maybe_cls=None, these=None, repr_ns=None,
 repr=True, cmp=True, hash=True, init=True,
 slots=False, frozen=False, str=False):
 r"""
 A class decorator that adds `dunder
 <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the
 specified attributes using :func:`attr.ib` or the *these* argument.

 :param these: A dictionary of name to :func:`attr.ib` mappings. This is
 useful to avoid the definition of your attributes within the class body
 because you can't (e.g. if you want to add ``__repr__`` methods to
 Django models) or don't want to (e.g. if you want to use
 :class:`properties <property>`).

 If *these* is not ``None``, the class body is *ignored*.

 :type these: :class:`dict` of :class:`str` to :func:`attr.ib`

 :param str repr_ns: When using nested classes, there's no way in Python 2
 to automatically detect that. Therefore it's possible to set the
 namespace explicitly for a more meaningful ``repr`` output.
 :param bool repr: Create a ``__repr__`` method with a human readable
 represantation of ``attrs`` attributes..
 :param bool str: Create a ``__str__`` method that is identical to
 ``__repr__``. This is usually not necessary except for
 :class:`Exception`\ s.
 :param bool cmp: Create ``__eq__``, ``__ne__``, ``__lt__``, ``__le__``,
 ``__gt__``, and ``__ge__`` methods that compare the class as if it were
 a tuple of its ``attrs`` attributes. But the attributes are *only*
 compared, if the type of both classes is *identical*!
 :param bool hash: Create a ``__hash__`` method that returns the
 :func:`hash` of a tuple of all ``attrs`` attribute values.
 :param bool init: Create a ``__init__`` method that initialiazes the
 ``attrs`` attributes. Leading underscores are stripped for the
 argument name. If a ``__attrs_post_init__`` method exists on the
 class, it will be called after the class is fully initialized.
 :param bool slots: Create a slots_-style class that's more
 memory-efficient. See :ref:`slots` for further ramifications.
 :param bool frozen: Make instances immutable after initialization. If
 someone attempts to modify a frozen instance,
 :exc:`attr.exceptions.FrozenInstanceError` is raised.

 Please note:

 1. This is achieved by installing a custom ``__setattr__`` method
 on your class so you can't implement an own one.

 2. True immutability is impossible in Python.

 3. This *does* have a minor a runtime performance :ref:`impact
 <how-frozen>` when initializing new instances. In other words:
 ``__init__`` is slightly slower with ``frozen=True``.

 .. _slots: https://docs.python.org/3.5/reference/datamodel.html#slots

 .. versionadded:: 16.0.0 *slots*
 .. versionadded:: 16.1.0 *frozen*
 .. versionadded:: 16.3.0 *str*, and support for ``__attrs_post_init__``.
 """
 def wrap(cls):
 if getattr(cls, "__class__", None) is None:
 raise TypeError("attrs only works with new-style classes.")

 if repr is False and str is True:
 raise ValueError(
 "__str__ can only be generated if a __repr__ exists."
)

 if slots:
 # Only need this later if we're using slots.
 if these is None:
 ca_list = [name
 for name, attr
 in cls.__dict__.items()
 if isinstance(attr, _CountingAttr)]
 else:
 ca_list = list(iterkeys(these))
 _transform_attrs(cls, these)
 if repr is True:
 cls = _add_repr(cls, ns=repr_ns)
 if str is True:
 cls.__str__ = cls.__repr__
 if cmp is True:
 cls = _add_cmp(cls)
 if hash is True:
 cls = _add_hash(cls)
 if init is True:
 cls = _add_init(cls, frozen)
 if frozen is True:
 cls.__setattr__ = _frozen_setattrs
 if slots is True:
 # slots and frozen require __getstate__/__setstate__ to work
 cls = _add_pickle(cls)
 if slots is True:
 cls_dict = dict(cls.__dict__)
 cls_dict["__slots__"] = tuple(ca_list)
 for ca_name in ca_list:
 # It might not actually be in there, e.g. if using 'these'.
 cls_dict.pop(ca_name, None)
 cls_dict.pop("__dict__", None)

 qualname = getattr(cls, "__qualname__", None)
 cls = type(cls.__name__, cls.__bases__, cls_dict)
 if qualname is not None:
 cls.__qualname__ = qualname

 return cls

 # attrs_or class type depends on the usage of the decorator. It's a class
 # if it's used as `@attributes` but ``None`` if used # as `@attributes()`.
 if maybe_cls is None:
 return wrap
 else:
 return wrap(maybe_cls)

def _attrs_to_tuple(obj, attrs):
 """
 Create a tuple of all values of *obj*'s *attrs*.
 """
 return tuple(getattr(obj, a.name) for a in attrs)

def _add_hash(cls, attrs=None):
 """
 Add a hash method to *cls*.
 """
 if attrs is None:
 attrs = [a for a in cls.__attrs_attrs__ if a.hash]

 def hash_(self):
 """
 Automatically created by attrs.
 """
 return hash(_attrs_to_tuple(self, attrs))

 cls.__hash__ = hash_
 return cls

def _add_cmp(cls, attrs=None):
 """
 Add comparison methods to *cls*.
 """
 if attrs is None:
 attrs = [a for a in cls.__attrs_attrs__ if a.cmp]

 def attrs_to_tuple(obj):
 """
 Save us some typing.
 """
 return _attrs_to_tuple(obj, attrs)

 def eq(self, other):
 """
 Automatically created by attrs.
 """
 if other.__class__ is self.__class__:
 return attrs_to_tuple(self) == attrs_to_tuple(other)
 else:
 return NotImplemented

 def ne(self, other):
 """
 Automatically created by attrs.
 """
 result = eq(self, other)
 if result is NotImplemented:
 return NotImplemented
 else:
 return not result

 def lt(self, other):
 """
 Automatically created by attrs.
 """
 if isinstance(other, self.__class__):
 return attrs_to_tuple(self) < attrs_to_tuple(other)
 else:
 return NotImplemented

 def le(self, other):
 """
 Automatically created by attrs.
 """
 if isinstance(other, self.__class__):
 return attrs_to_tuple(self) <= attrs_to_tuple(other)
 else:
 return NotImplemented

 def gt(self, other):
 """
 Automatically created by attrs.
 """
 if isinstance(other, self.__class__):
 return attrs_to_tuple(self) > attrs_to_tuple(other)
 else:
 return NotImplemented

 def ge(self, other):
 """
 Automatically created by attrs.
 """
 if isinstance(other, self.__class__):
 return attrs_to_tuple(self) >= attrs_to_tuple(other)
 else:
 return NotImplemented

 cls.__eq__ = eq
 cls.__ne__ = ne
 cls.__lt__ = lt
 cls.__le__ = le
 cls.__gt__ = gt
 cls.__ge__ = ge

 return cls

def _add_repr(cls, ns=None, attrs=None):
 """
 Add a repr method to *cls*.
 """
 if attrs is None:
 attrs = [a for a in cls.__attrs_attrs__ if a.repr]

 def repr_(self):
 """
 Automatically created by attrs.
 """
 real_cls = self.__class__
 if ns is None:
 qualname = getattr(real_cls, "__qualname__", None)
 if qualname is not None:
 class_name = qualname.rsplit(">.", 1)[-1]
 else:
 class_name = real_cls.__name__
 else:
 class_name = ns + "." + real_cls.__name__

 return "{0}({1})".format(
 class_name,
 ", ".join(a.name + "=" + repr(getattr(self, a.name))
 for a in attrs)
)
 cls.__repr__ = repr_
 return cls

def _add_init(cls, frozen):
 """
 Add a __init__ method to *cls*. If *frozen* is True, make it immutable.
 """
 attrs = [a for a in cls.__attrs_attrs__
 if a.init or a.default is not NOTHING]

 # We cache the generated init methods for the same kinds of attributes.
 sha1 = hashlib.sha1()
 sha1.update(repr(attrs).encode("utf-8"))
 unique_filename = "<attrs generated init {0}>".format(
 sha1.hexdigest()
)

 script, globs = _attrs_to_script(
 attrs,
 frozen,
 getattr(cls, "__attrs_post_init__", False),
)
 locs = {}
 bytecode = compile(script, unique_filename, "exec")
 attr_dict = dict((a.name, a) for a in attrs)
 globs.update({
 "NOTHING": NOTHING,
 "attr_dict": attr_dict,
 })
 if frozen is True:
 # Save the lookup overhead in __init__ if we need to circumvent
 # immutability.
 globs["_cached_setattr"] = _obj_setattr
 eval(bytecode, globs, locs)
 init = locs["__init__"]

 # In order of debuggers like PDB being able to step through the code,
 # we add a fake linecache entry.
 linecache.cache[unique_filename] = (
 len(script),
 None,
 script.splitlines(True),
 unique_filename
)
 cls.__init__ = init
 return cls

def _add_pickle(cls):
 """
 Add pickle helpers, needed for frozen and slotted classes
 """
 def _slots_getstate__(obj):
 """
 Play nice with pickle.
 """
 return tuple(getattr(obj, a.name) for a in fields(obj.__class__))

 def _slots_setstate__(obj, state):
 """
 Play nice with pickle.
 """
 __bound_setattr = _obj_setattr.__get__(obj, Attribute)
 for a, value in zip(fields(obj.__class__), state):
 __bound_setattr(a.name, value)

 cls.__getstate__ = _slots_getstate__
 cls.__setstate__ = _slots_setstate__
 return cls

def fields(cls):
 """
 Returns the tuple of ``attrs`` attributes for a class.

 The tuple also allows accessing the fields by their names (see below for
 examples).

 :param type cls: Class to introspect.

 :raise TypeError: If *cls* is not a class.
 :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs``
 class.

 :rtype: tuple (with name accesors) of :class:`attr.Attribute`

 .. versionchanged:: 16.2.0 Returned tuple allows accessing the fields
 by name.
 """
 if not isclass(cls):
 raise TypeError("Passed object must be a class.")
 attrs = getattr(cls, "__attrs_attrs__", None)
 if attrs is None:
 raise NotAnAttrsClassError(
 "{cls!r} is not an attrs-decorated class.".format(cls=cls)
)
 return attrs

def validate(inst):
 """
 Validate all attributes on *inst* that have a validator.

 Leaves all exceptions through.

 :param inst: Instance of a class with ``attrs`` attributes.
 """
 if _config._run_validators is False:
 return

 for a in fields(inst.__class__):
 if a.validator is not None:
 a.validator(inst, a, getattr(inst, a.name))

def _attrs_to_script(attrs, frozen, post_init):
 """
 Return a script of an initializer for *attrs* and a dict of globals.

 The globals are expected by the generated script.

 If *frozen* is True, we cannot set the attributes directly so we use
 a cached ``object.__setattr__``.
 """
 lines = []
 if frozen is True:
 lines.append(
 # Circumvent the __setattr__ descriptor to save one lookup per
 # assignment.
 "_setattr = _cached_setattr.__get__(self, self.__class__)"
)

 def fmt_setter(attr_name, value_var):
 return "_setattr('%(attr_name)s', %(value_var)s)" % {
 "attr_name": attr_name,
 "value_var": value_var,
 }

 def fmt_setter_with_converter(attr_name, value_var):
 conv_name = _init_convert_pat.format(attr_name)
 return "_setattr('%(attr_name)s', %(conv)s(%(value_var)s))" % {
 "attr_name": attr_name,
 "value_var": value_var,
 "conv": conv_name,
 }
 else:
 def fmt_setter(attr_name, value):
 return "self.%(attr_name)s = %(value)s" % {
 "attr_name": attr_name,
 "value": value,
 }

 def fmt_setter_with_converter(attr_name, value_var):
 conv_name = _init_convert_pat.format(attr_name)
 return "self.%(attr_name)s = %(conv)s(%(value_var)s)" % {
 "attr_name": attr_name,
 "value_var": value_var,
 "conv": conv_name,
 }

 args = []
 attrs_to_validate = []

 # This is a dictionary of names to validator and converter callables.
 # Injecting this into __init__ globals lets us avoid lookups.
 names_for_globals = {}

 for a in attrs:
 if a.validator is not None:
 attrs_to_validate.append(a)
 attr_name = a.name
 arg_name = a.name.lstrip("_")
 if a.init is False:
 if isinstance(a.default, Factory):
 if a.convert is not None:
 lines.append(fmt_setter_with_converter(
 attr_name,
 "attr_dict['{attr_name}'].default.factory()"
 .format(attr_name=attr_name)))
 conv_name = _init_convert_pat.format(a.name)
 names_for_globals[conv_name] = a.convert
 else:
 lines.append(fmt_setter(
 attr_name,
 "attr_dict['{attr_name}'].default.factory()"
 .format(attr_name=attr_name)
))
 else:
 if a.convert is not None:
 lines.append(fmt_setter_with_converter(
 attr_name,
 "attr_dict['{attr_name}'].default"
 .format(attr_name=attr_name)
))
 conv_name = _init_convert_pat.format(a.name)
 names_for_globals[conv_name] = a.convert
 else:
 lines.append(fmt_setter(
 attr_name,
 "attr_dict['{attr_name}'].default"
 .format(attr_name=attr_name)
))
 elif a.default is not NOTHING and not isinstance(a.default, Factory):
 args.append(
 "{arg_name}=attr_dict['{attr_name}'].default".format(
 arg_name=arg_name,
 attr_name=attr_name,
)
)
 if a.convert is not None:
 lines.append(fmt_setter_with_converter(attr_name, arg_name))
 names_for_globals[_init_convert_pat.format(a.name)] = a.convert
 else:
 lines.append(fmt_setter(attr_name, arg_name))
 elif a.default is not NOTHING and isinstance(a.default, Factory):
 args.append("{arg_name}=NOTHING".format(arg_name=arg_name))
 lines.append("if {arg_name} is not NOTHING:"
 .format(arg_name=arg_name))
 if a.convert is not None:
 lines.append(" " + fmt_setter_with_converter(attr_name,
 arg_name))
 lines.append("else:")
 lines.append(" " + fmt_setter_with_converter(
 attr_name,
 "attr_dict['{attr_name}'].default.factory()"
 .format(attr_name=attr_name)
))
 names_for_globals[_init_convert_pat.format(a.name)] = a.convert
 else:
 lines.append(" " + fmt_setter(attr_name, arg_name))
 lines.append("else:")
 lines.append(" " + fmt_setter(
 attr_name,
 "attr_dict['{attr_name}'].default.factory()"
 .format(attr_name=attr_name)
))
 else:
 args.append(arg_name)
 if a.convert is not None:
 lines.append(fmt_setter_with_converter(attr_name, arg_name))
 names_for_globals[_init_convert_pat.format(a.name)] = a.convert
 else:
 lines.append(fmt_setter(attr_name, arg_name))

 if attrs_to_validate: # we can skip this if there are no validators.
 names_for_globals["_config"] = _config
 lines.append("if _config._run_validators is False:")
 lines.append(" return")
 for a in attrs_to_validate:
 val_name = "__attr_validator_{}".format(a.name)
 attr_name = "__attr_{}".format(a.name)
 lines.append("{}(self, {}, self.{})".format(val_name, attr_name,
 a.name))
 names_for_globals[val_name] = a.validator
 names_for_globals[attr_name] = a
 if post_init:
 lines.append("self.__attrs_post_init__()")

 return """\
def __init__(self, {args}):
 {lines}
""".format(
 args=", ".join(args),
 lines="\n ".join(lines) if lines else "pass",
), names_for_globals

class Attribute(object):
 """
 Read-only representation of an attribute.

 :attribute name: The name of the attribute.

 Plus *all* arguments of :func:`attr.ib`.
 """
 __slots__ = ("name", "default", "validator", "repr", "cmp", "hash", "init",
 "convert", "metadata")

 def __init__(self, name, default, validator, repr, cmp, hash, init,
 convert=None, metadata=None):
 # Cache this descriptor here to speed things up later.
 __bound_setattr = _obj_setattr.__get__(self, Attribute)

 __bound_setattr("name", name)
 __bound_setattr("default", default)
 __bound_setattr("validator", validator)
 __bound_setattr("repr", repr)
 __bound_setattr("cmp", cmp)
 __bound_setattr("hash", hash)
 __bound_setattr("init", init)
 __bound_setattr("convert", convert)
 __bound_setattr("metadata", (metadata_proxy(metadata) if metadata
 else _empty_metadata_singleton))

 def __setattr__(self, name, value):
 raise FrozenInstanceError()

 @classmethod
 def from_counting_attr(cls, name, ca):
 inst_dict = dict((k, getattr(ca, k))
 for k
 in Attribute.__slots__
 if k != "name")
 return cls(name=name, **inst_dict)

 # Don't use _add_pickle since fields(Attribute) doesn't work
 def __getstate__(self):
 """
 Play nice with pickle.
 """
 return tuple(getattr(self, name) if name != "metadata"
 else dict(self.metadata)
 for name in self.__slots__)

 def __setstate__(self, state):
 """
 Play nice with pickle.
 """
 __bound_setattr = _obj_setattr.__get__(self, Attribute)
 for name, value in zip(self.__slots__, state):
 if name != "metadata":
 __bound_setattr(name, value)
 else:
 __bound_setattr(name, metadata_proxy(value) if value else
 _empty_metadata_singleton)

_a = [Attribute(name=name, default=NOTHING, validator=None,
 repr=True, cmp=True, hash=(name != "metadata"), init=True)
 for name in Attribute.__slots__]

Attribute = _add_hash(
 _add_cmp(_add_repr(Attribute, attrs=_a), attrs=_a),
 attrs=[a for a in _a if a.hash]
)

class _CountingAttr(object):
 """
 Intermediate representation of attributes that uses a counter to preserve
 the order in which the attributes have been defined.
 """
 __slots__ = ("counter", "default", "repr", "cmp", "hash", "init",
 "metadata", "validator", "convert")
 __attrs_attrs__ = tuple(
 Attribute(name=name, default=NOTHING, validator=None,
 repr=True, cmp=True, hash=True, init=True)
 for name
 in ("counter", "default", "repr", "cmp", "hash", "init",)
) + (
 Attribute(name="metadata", default=None, validator=None,
 repr=True, cmp=True, hash=False, init=True),
)
 cls_counter = 0

 def __init__(self, default, validator, repr, cmp, hash, init, convert,
 metadata):
 _CountingAttr.cls_counter += 1
 self.counter = _CountingAttr.cls_counter
 self.default = default
 self.validator = validator
 self.repr = repr
 self.cmp = cmp
 self.hash = hash
 self.init = init
 self.convert = convert
 self.metadata = metadata

_CountingAttr = _add_cmp(_add_repr(_CountingAttr))

@attributes(slots=True)
class Factory(object):
 """
 Stores a factory callable.

 If passed as the default value to :func:`attr.ib`, the factory is used to
 generate a new value.
 """
 factory = attr()

def make_class(name, attrs, **attributes_arguments):
 """
 A quick way to create a new class called *name* with *attrs*.

 :param name: The name for the new class.
 :type name: str

 :param attrs: A list of names or a dictionary of mappings of names to
 attributes.
 :type attrs: :class:`list` or :class:`dict`

 :param attributes_arguments: Passed unmodified to :func:`attr.s`.

 :return: A new class with *attrs*.
 :rtype: type
 """
 if isinstance(attrs, dict):
 cls_dict = attrs
 elif isinstance(attrs, (list, tuple)):
 cls_dict = dict((a, attr()) for a in attrs)
 else:
 raise TypeError("attrs argument must be a dict or a list.")

 return attributes(**attributes_arguments)(type(name, (object,), cls_dict))

 © Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Effect 0.11.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Effect 0.11.0 documentation »

 All modules for which code is available

		attr._make

		effect._base

		effect._dispatcher

		effect._intents

		effect._sync

		effect.async

		effect.do

		effect.fold

		effect.io

		effect.ref

		effect.retry

		effect.testing

		effect.threads

 © Copyright 2015, Christopher Armstrong.
 Created using Sphinx 1.3.5.

